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Factorisation into irreducible elements
Definition. Let R be an integral domain. Then we define the following.

An element α of R is said to be a unit of R if there exists β ∈ R such
that αβ = 1.
Two elements α, β are said to be associates if there exists a unit ε of
R such that β = αε.
A non-zero non-unit element α of R is said to be an irreducible
element of R if whenever α = βγ with β, γ ∈ R, then either β or γ is
a unit.
A non-zero non-unit element α of R is said to be a prime element of
R if whenever α|βγ with β, γ ∈ R, then either α|β or α|γ.

Note: Every prime element is irreducible in an integral domain but the
converse is not true in general.
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Definitions.
An integral domain R is said to be a factorization domain if every
non-zero non-unit element of R can be expressed as a product of
finitely many irreducible elements of R.
A factorization domain R is called a unique factorization
domain(UFD) if whenever p1p2 · · · pr = q1q2 · · · qs with every pi , qj
irreducible in R, then r = s and there is a permutation σ of
{1, 2, . . . , r} such that pi and qσ(i) are associates for all
i = 1, 2, . . . , r .
An integral domain R is said to be a principal ideal domain if every
ideal of R is a principal ideal.

Every principal ideal domain is a unique factorization domain but the
converse is not true in general.
However we shall prove in this chapter that the converse is true for
the ring of algebraic integers OK of an algebraic number field K .
We shall also prove that each OK is a factorization domain.
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The following proposition characterizes the units of OK in terms of their
norms.

Proposition 1. Let K be an algebraic number field. An element α of OK is
a unit if and only if NK/Q(α) = ±1.

Remark: Recall that for an element α ∈ OK by virtue of Theorem 16 of
[1-4],

NK/Q(α) = (NQ(α)/Q(α))[K :Q(α)].

So by the above proposition implies that α is a unit of OK if and only if

NQ(α)/Q(α) = ±1.
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Corollary 2. Let K be an algebraic number field and α be an element of
OK such that |NK/Q(α)| is a prime number, then α is an irreducible
element of OK .

If α is as in the above corollary, then it will be proved in these lectures
that α is indeed a prime element of OK .

Lemma 3. If α is a non-zero algebraic integer belonging to an algebraic
number field K , then the element NK/Q(α)/α is an algebraic integer in K .
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The following theorem says that OK is a factorization domain.

Theorem 4. Let K be an algebraic number field. Then any non-zero
non-unit element α of OK can be written as a product of finitely many
irreducible elements of OK .

Remark. The ring A consisting of all algebraic integers in C does not have
an irreducible element, because for any α ∈ A,

√
α ∈ A. In particular A is

not a factorization domain.
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Corollary 5. For an algebraic number field K ,OK has infinitely many
non-associate irreducible elements.

Note.
For an imaginary quadratic field K = Q(

√
d) with d a negative

square free integer, Gauss proved that OK is a UFD for d = −1, −2,
−3, −7, −11, −19, −43, −67, −163.
He also conjectured that these are the only nine imaginary quadratic
fields K for which OK is a UFD. This conjecture remained open until
1966 when it was proved by Baker [Bak] and Stark [Sta].
Gauss also conjectured that there are infinitely many real quadratic
fields whose ring of algebraic integers are unique factorization
domains. This conjecture is neither proved nor disproved as yet.
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Now we will study properties of ideals of OK . We first recall some
definitions.

Definition. Let R be an integral domain with quotient field F . A subset I
of F is called a fractional ideal of R if the following three conditions are
satisfied:
(i) I is an additive subgroup of F .
(ii) For every a ∈ I and r ∈ R, ar ∈ I.
(iii) There exists α 6= 0 in R such that αI ⊆ R.

Note. Every ideal of R is a fractional ideal of R, but the converse is not
true. To be more specific, an ideal of R will sometimes be called an
integral ideal of R.
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Notation. If I, J are fractional ideals of R, then IJ is defined to be the
subset of F consisting of all finite sums of the type

∑
i

aibi where ai ’s
belong to I and bi ’s belong to J . Note that IJ is a fractional ideal of R
and is called the product of I with J .

Definition. A non-zero fractional ideal I of R is called invertible if there
exists a fractional ideal J of R such that IJ = R. Such an ideal J is called
(the) inverse of I. One can check that if inverse of I exists, then it is
unique. We shall denote the inverse of an ideal I by I−1.

Note that if a fractional ideal I of an integral domain R with quotient field
F is invertible, then

I−1 = {α ∈ F | αI ⊆ R}; (1)
this holds because if I ′ denotes the ideal on the right hand side of (1) and
J denotes the inverse of I, then clearly J ⊆ I ′ and
I ′ = I ′(IJ) = (I ′I)J ⊆ RJ = J .
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Definition. A fractional ideal I of R is said to be finitely generated if there
exist a1, . . . , an in I such that I = Ra1 + · · ·+ Ran, i.e., every α ∈ I can be
written as α = r1a1 + · · ·+ rnan for some r1, . . . , rn in R; in this situation
a1, . . . , an is called a system of generators of I and we sometimes express it
by writing I = 〈a1, . . . , an〉.
If a fractional ideal is generated by a single element, it is called a principal
fractional ideal.

we prove the following slightly more general result of “every ideal of the
ring of algebraic integers in an algebraic number field is finitely generated".

Theorem 6. Let K be an algebraic number field of degree n. Any non-zero
ideal I of OK is a free abelian group of rank n.

Corollary 7. Let K be an algebraic number field. Then every ideal of OK is
finitely generated.
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The class of commutative rings with identity in which every ideal is finitely
generated is of fundamental importance in ring theory. Such rings are
called Noetherian rings and are named after a great algebraist Emmy
Noether who introduced this concept. We now state a basic proposition
which gives two more equivalent conditions for a ring to be Noetherian.

Proposition 8.
For a commutative ring R with identity, the following conditions are
equivalent.
(i) Every ideal of R is finitely generated.
(ii) Every ascending chain of ideals of R is stationary i.e., if I1 ⊆ I2 ⊆ . . .

are ideals of R, then there exists m such that In = Im for every n ≥ m.
(iii) Every non-empty family S of ideals of R has a maximal element with

respect to the inclusion relation i.e., there exist J ∈ S such that J is
not properly contained in any member of S.
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Recall from algebra.
An ideal p 6= R of a ring R is called a prime ideal if whenever αβ ∈ p for
α, β ∈ R, then either α ∈ p or β ∈ p. An ideal m of R is called maximal if
m 6= R and m is not properly contained in any ideal of R except R.

Note. It can easily be seen that every maximal ideal of a commutative ring
with identity is a prime ideal but the converse is not true.
For example, consider R = Z[X ], then 〈2〉 is a prime ideal of R but it is
not maximal as 〈2〉 $ 〈2,X 〉 $ Z[X ].
However the following theorem shows that the converse holds for the ring
of algebraic integers of an algebraic number field.

Theorem 9. Let K be an algebraic number field. Then every non-zero
prime ideal of OK is maximal.
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Combining Corollary 9 of [1-4], Corollary 7 and the above theorem, we see
that OK is an integrally closed domain which is Noetherian and in which
every non-zero prime ideal is maximal. This leads to the following
definition.

Definition. An integral domain R is called a Dedekind domain if R is
integrally closed Noetherian domain in which every non-zero prime ideal is
maximal.

Note. As pointed out above OK is a Dedekind domain for each algebraic
number field K . It can be easily seen that every principal ideal domain is a
Dedekind domain.
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We now prove a few results regarding the factorization of ideals in a
Dedekind domain which will be needed in the sequel.

Theorem 10. Every non-zero fractional ideal of a Dedekind domain is
invertible.

Theorem 11. Let R be a Dedekind domain. Then every non-zero proper
ideal of R can be written as a product of prime ideals of R in one and only
one way except for the order of factors.

Note. The converse of the above two theorems is true.
If every non-zero fractional ideal of an integral domain R is invertible,
then R is a Dedekind domain.
It is also known that in an integral domain R, if every non-zero proper
ideal R can be written as a product of prime ideals of R, then R is a
Dedekind domain; the uniqueness of factorization follows from
existence.
We shall not prove the above mentioned points as these are not
needed in the sequel.
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We first state three lemmas which are used in the proof of Theorems 10,
11.

Lemma 12. If R is a Noetherian domain and I is a non-zero ideal of R
different from R, then there exist prime ideals p1, . . . , pr of R such that
p1 · · · pr ⊆ I ⊆ p1 ∩ . . . ∩ pr .

Lemma 13. If R is a Dedekind domain, then every non-zero prime ideal p
of R is invertible.

Lemma 14. If R is a Dedekind domain, then every non-zero ideal of R
except R is a product of prime ideals of R.
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Now we give some corollaries of Theorems 10 and 11.

Corollary 15. The set of all non-zero fractional ideals of a Dedekind
domain R is a group under multiplication of ideals. This group is free
abelian generated by all non-zero prime ideals of R.

Corollary 16. A Dedekind domain which is a unique factorization domain is
a principal ideal domain.
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Theorem 11 leads to the notion of the greatest common divisor (gcd) of
ideals in Dedekind domains. We first recall the notion of divisibility of
ideals.

Definition. Let A and B be two ideals of an integral domain R. We say
that A divides B and write A|B if there is an (integral) ideal C of R such
that B = AC . Note that if A divides B, then B ⊆ A. We shall show soon
that the converse is true in a Dedekind domain R. But the converse is
false for a general integral domain R as the following example shows.

Example. Consider R = Z[X ], the ring of polynomials in indeterminate X
with coefficients from Z. Let A = 〈2,X 〉 and B = 〈2〉 be ideals of R. We
show that A - B. If B = AC for some ideal C of R, then Xg(X ) has even
coefficients for each g(X ) ∈ C which implies that g(X ) has all even
coefficients. Hence C ⊆ 2Z[X ]. Also C ⊇ B. So B = C = 2Z[X ].
Multiplying the equation B = AC on both sides by 〈2〉−1, we see that
R = A = 〈2,X 〉 which is not so.
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Definition. Let A and B be two non-zero ideals in an integral domain R.
We say that an ideal D is the greatest common divisor (gcd) of A and B if
D|A , D|B and whenever an ideal C |A and C |B, then C |D. Similarly one
can define the least common multiple (lcm) of ideals. Two ideals are said
to be relatively prime or coprime if their gcd is R.

Note. gcd and lcm of two non-zero ideals always exist in a Dedekind
domain in view of Theorem 11. However gcd or lcm of two non-zero
elements may not exist in a Dedekind domain. Consider R = Z[

√
−5]. It

can be easily seen that 6, 3(1 +
√
−5) do not have a gcd and 2, 1 +

√
−5

have no lcm.
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Theorem 17. Let R be a Dedekind domain. The following hold:
(i) For fractional ideals A,B of R, A ⊆ B if and only if A = BC for some

integral ideal C of R.
(ii) If A and B are relatively prime ideals in R, then AB = A ∩ B.
(iii) If A and B are ideals in R, then gcd(A,B) = A + B.
(iv) If A and B are ideals in R, then lcm(A,B) = A ∩ B.

Definition. Let I be a non-zero ideal of R and a, b be elements of R. We
say that a is congruent to b modulo I and write a ≡ b (mod I) if
I|(a − b)R, i .e., if a − b ∈ I.
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Proposition 18. Let R be a Dedekind domain and I be a non-zero ideal of
R. Let a, b ∈ R with a 6= 0. Then the congruence aX ≡ b (mod I) is
solvable in R if and only if gcd(aR, I)|bR, which is so if and only if
b ∈ aR + I.

Proof. In view of Theorem 17, gcd(aR, I)|bR if and only if aR + I ⊇ bR,
which is so if and only if b ∈ aR + I. So it is enough to prove the
equivalence of the first and the last assertions of the proposition, which
can be easily verified.

Corollary 19. Let p be a non-zero prime ideal in a Dedekind domain R. Let
a ∈ R r p, then for every natural number n, the congruence
aX ≡ b (mod pn) is solvable for each b belonging to R.

Proof. In view of the above proposition, it is enough to verify that
gcd(aR, pn) = R. Clearly gcd(aR, pn) = pj for some j , 0 ≤ j ≤ n. If j > 0,
then pj |aR. So pj ⊇ aR. This implies that a ∈ pj ⊆ p , a contradiction. So
j = 0 and gcd(aR, pn) = R.
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We shall use the following theorem which is named after a classical
theorem of elementary number theory.

Theorem 20 (Chinese Remainder Theorem). Let I1, . . . , Im be ideals of a
commutative ring R with identity such that Ii + Ij = R for
i 6= j , 1 ≤ i , j ≤ m. Then given x1, . . . , xm in R, there exists x ∈ R such
that x ≡ xj (mod Ij) for 1 ≤ j ≤ m.

Note. In Dedekind domains, Generalized Chinese Remainder Theorem
holds which is as follows:
Let I1, . . . , Im be ideals of a Dedekind domain R, then for given x1, . . . , xm
belonging to R, there exists x ∈ R such that x ≡ xi (mod Ii) for
1 ≤ i ≤ m if and only if xi − xj ∈ Ii + Ij for each pair i , j , 1 ≤ i , j ≤ m.
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The following corollary describes an important property of ideals of a
Dedekind domain. It is stronger than saying that every non-zero ideal is
invertible. Corollary 21. If I and J are non-zero ideals of a Dedekind
domain R, then there exists an ideal A of R such that gcd(A, IJ) = R and
AI is principal.

The following corollary sharpens the fact that every Dedekind domain is
Noetherian.

Corollary 22. Let I be an ideal of a Dedekind domain R. Given any
non-zero x ∈ I, there exists y ∈ I such that I is the ideal generated by x
and y .
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Norm of an ideal
We now introduce the notion of norm of non-zero ideals in a Dedekind
domain.

Definition. Let R be a Dedekind domain and I be a non-zero ideal in R.
The number of elements of R/I is called the norm of I and is denoted by
N(I). A Dedekind domain R is said to have finite norm property if R/I is a
finite ring for every non-zero ideal I of R.

Example. If K is an algebraic number field, then OK has finite norm
property in view of Theorem 6 and Lemma 10.

Example. For any infinite field F , the ring F [X ] of polynomials in an
indeterminate X (which is a PID and hence a Dedekind domain) does not
have finite norm property.
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Lemma 23. Let R be a Dedekind domain and I be a non-zero ideal in R.
Write I =

r∏
i=1

pai
i as a product of powers of distinct prime ideals, then the

factor ring R/I is isomorphic to R/pa1
1 ⊕ · · · ⊕ R/par

r .

We shall now prove that norm is multiplicative.

Lemma 24. If p is a non-zero prime ideal in a Dedekind domain R, then
R/p is isomorphic to pm/pm+1 as an additive group for m ≥ 1.

Theorem 25. For a Dedekind domain R with finite norm property, the
following hold :
(i) If I, J are non-zero ideals of R, then N(IJ) = N(I)N(J).
(ii) For a given positive integer t, the number of ideals I of R satisfying

N(I) ≤ t is finite.
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Definition. Let R be Dedekind domain with finite norm property and I be
a non-zero fractional ideal of R. Suppose that I = AB−1, where A,B are
(integral) ideals, we define N(I) = N(A)/N(B).
This is well defined, because if I = AB−1 = A1B−1

1 , then AB1 = A1B and
hence N(A)N(B1) = N(A1)N(B).

Using the notion of norm of ideals, we now prove the analogues of
Fermat’s little theorem and Euler’s theorem for Dedekind domains with
finite norm property.

Generalized Fermat’s Theorem. Let R be a Dedekind domain with finite
norm property. If p is a non-zero prime ideal in R, then xN(p) ≡ x (mod p)
for every x belonging to R. Moreover N(p) is the smallest positive integer
amongst integers n ≥ 2 such that xn ≡ x (mod p) for every x ∈ R.
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Generalized Euler’s Theorem. Let R be a Dedekind domain with finite
norm property. For any non-zero ideal I of R, let φ(I) denote the number
of invertible elements of the ring R/I. Then φ(I) = N(I)

∏
p|I

(
1− 1

N(p)
)
,

where the product extends over all prime ideals dividing I.

Lemma 26. Let p be a non-zero prime ideal of a Dedekind domain R, then
R/pn−1 and p/pn are isomorphic as additive groups for n ≥ 2.

Corollary 27. If I and J are coprime ideals of a Dedekind domain R, then
φ(IJ) = φ(I)φ(J).

The following proposition describes the norm of principal ideals of OK .

Proposition 27. Let K be an algebraic number field. For any non-zero
element α of K , N(αOK ) = |NK/Q(α)|.
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By virtue of the fact that if norm of an ideal I is a prime number, then I is
a prime ideal, the following corollary is an immediate consequence of the
above proposition.

Corollary 28. Let α be an algebraic integer belonging to an algebraic
number field K such that |NK/Q(α)| is a prime number, then α is a prime
element of OK .

In view of the above corollary, it can be easily seen that 1− ω and 1 + 2ω
are prime elements in the ring Z[ω], where ω = (−1 +

√
−3)/2.
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Examples.

1. Let K = Q(
√
−5). Then the element α := 1+

√
−5 can not be a prime

element of OK .
For otherwise αOK would be a prime ideal and hence its norm will be
a prime power which is not so, because in view of Proposition 27,
N(αOK ) = 6.
However α is an irreducible element of OK .
If α = βγ with β, γ non-units of OK , then either β or γ has norm 2.
So there exist a, b ∈ Z such that a2 + 5b2 = 2 which is impossible.
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2. We show that the ideal I = 〈1 +
√
−5, 1−

√
−5〉 is a maximal ideal of

the Dedekind domain Z[
√
−5] and is not principal.

As (1 +
√
−5) ∈ I, so I divides 〈1 +

√
−5〉 and hence by virtue of

Proposition 27, N(I) divides NK/Q(1 +
√
−5) = 6, where

K = Q(
√
−5).

Similarly keeping in view that 2 ∈ I, we see that N(I) divides 4.
Hence N(I) divides 2.
We will show that I 6= Z[

√
−5]. This will prove that N(I) = 2 and

consequently I will be a prime and hence maximal ideal of
OK = Z[

√
−5]. If I = OK , then there exist a, b, c, d in Z such that

1 = (1 +
√
−5)(a + b

√
−5) + (1−

√
−5)(c + d

√
−5).

Separating the real and imaginary parts, the above equation gives
1 = a − 5b + c + 5d , 0 = a + b − c + d .

On adding these equations, we obtain 1 = 2a − 4b + 6d , which leads
to a contradiction. Hence I 6= OK .
If I is a principal ideal generated by an element α = a + b

√
−5 of

Z[
√
−5], then by Proposition 27, 2 = N(I) = NK/Q(α) = a2 + 5b2,

which is not possible.
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3. Let I =
〈
3, 1 + 2

√
−5
〉
be the ideal of OK , where K = Q(

√
−5). As in

the above example, it can be shown that I is a maximal ideal of OK . We
compute the inverse of the ideal I.

In view of (1),

I−1 = {α ∈ K | αI ⊆ OK} = {α ∈ K | 3α ∈ OK , (1+2
√
−5)α ∈ OK}.

Let a + b
√
−5 be an element of K with a, b ∈ Q. It can be easily

seen that 3(a + b
√
−5) ∈ OK if and only if 3a, 3b ∈ Z. Further

(1 + 2
√
−5)(a + b

√
−5) ∈ OK if and only if a− 10b, 2a + b are in Z.

On writing a = a′/3 and b = b′/3 with a′, b′ ∈ Z, we see that
a − 10b and 2a + b are in Z if and only if a′ ≡ b′ (mod 3). So
I−1 = {(a′ + b′

√
−5)/3 | a′, b′ ∈ Z, a′ ≡ b′ (mod 3)}.
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Exercises
Determine the inverse of ideal 〈1 +

√
−5, 1−

√
−5〉 of OK , where

K = Q(
√
−5).

(True/False) If I is a non-zero ideal of OK with N(I) a prime number,
then I is a prime ideal. Justify your answer.
Let I be a non-zero ideal of OK . Prove that I contains N(I) and if m
is the least positive integer in I, then m divides N(I).
Prove that the ideal

〈
1 +
√
−5, 1−

√
−5
〉
is prime ideal in Z[

√
−5].

Let K = Q(θ), where θ3 − θ − 1 = 0. Prove that the ideal 〈23, 3− θ〉
is a prime ideal in OK .

Find a solution of the congruence (
√
−5)x ≡ 3 (mod I) in Z[

√
−5],

where I = 〈3, 1 +
√
−5〉.

(Generalized Wilson Theorem) Let K be an algebraic number field.
Let p be a non-zero prime ideal of OK and {ξ1, . . . , ξs} be a system
of representatives of all non-zero distinct elements of OK/p. Prove

that
s∏

i=1
ξi ≡ −1 mod p.
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